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Abstract. We find new behaviour in a lattice with second-neighbour interactions. First we find
solitary waves with oscillatory spatial decay, this is something that cannot occur in lattices with
nearest-neighbour interactions alone. This is found by standard asymptotic analysis, which leads
to an exact curve in parameter space where this behaviour starts. A number of highly accurate
quasi-continuum approximations are derived and solved. One of these suggests a possible
method for subsonic solitary waves to cease existing. An alternative method of approximation
elegantly reveals the differences in shape between subsonic and supersonic solitary waves. This
is based on the weak form of the differential–delay equation for the travelling wave, and is
derived using the calculus of variations.

1. Introduction

The subject of solitary waves in lattices with nearest-neighbour interactions has been the
topic of many studies [5, 6, 19–21, 26]. Few have studied the effects of adding a second
neighbour interaction term. In physical systems this type of interaction would typically
be present. Some investigations into its effect have been carried out, by Pnevmatikos
et al [11, 16, 12, 17] for example. These studies concentrate on numerical simulations
after some initial work on continuum expansions. Here we shall concentrate on forming
continuum expansions to higher accuracy, and shall see that this can account qualitatively
for some of the effects observed numerically in their simulations. For simplicity of algebra,
we only consider a harmonic second-neighbour potential energy term. This is obtained
from the leading order of a Taylor series of an arbitrary potential, where the second-
neighbour interaction is smaller than the nearest-neighbour. We allow the nearest-neighbour
interactions to be nonlinear, with a polynomial nonlinearity.

Highly accurate numerical approximations can be generated for the NNI lattice [10],
where it has been proven that solitary waves exist [24], but stability of such waves is still
unknown, but they are generally assumed to be stable—a view supported by numerical
calculations [25]. A similar situation holds in other lattice systems such as the existence of
breathers in the discrete sine–Gordon equation which has been proven by MacKay and Aubry
[15] and more recently some ‘practical’ stability results have been derived by Bambusi [1],
but a slight modification to the system can dramatically alter the properties [14].

St Pnevmatikoset al [16] have studied a more general, diatomic lattice with first- and
second-neighbour interactions. They analyse the types of soliton that can travel through the
lattice for varying parameter ranges. Diatomic lattices are also mentioned in [17], where the
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same authors study monatomic and diatomic lattices. They find different types of behaviour
for sub- and super-sonic waves.

Some effects of the second-neighbour interaction are known already—the most
remarkable is that it allows subsonic travelling waves to exist when the interaction is
competitive. These travelling waves are seen to exist in the region just below the speed of
sound. At speeds close to zero they appear to be unstable and split into two faster waves,
each with smaller amplitude. A mechanism for this was suggested by Flytzaniset al [12].
This effect was explained by the use of conservation laws which exist for the continuum
limit equation. However, these conservation laws do not hold for the fully discrete equation.
We shall supply an alternative mechanism for subsonic waves ceasing to exist as the wave
speed is reduced. Our explanation does not contradict the views of Flytzaniset al.

For less competitive interactions supersonic solitary waves exist, and for these we find a
threshold value where the form of their spatial decay changes from monotone to oscillatory
(but still a decay). This threshold is found exactly. The wavelength of the oscillation is
analysed, at the onset it is extremely long, but at higher speeds approaches four lattice sites.
When the second-neighbour interactions are additive, the effects on the solitary wave form
only a quantitative change from the NNI lattice—we find no new behaviour.

The methods used are taken from an earlier work [22], and have been used to explain
numerical results from other lattices [23, 27–29]. Despite our approximation of only
accounting for harmonic second-neighbour interactions, we expect the results to carry over
to anharmonic interactions where the coefficients of nonlinear terms are small: in physical
situations the interactions due to second-neighbours will be smaller than those due to nearest-
neighbours.

Also a new method outlined in [8] is extended to provide accurate approximations to the
shape of solitary waves. This method is based on the variational form of the problem, and
provides a simple expression for the waveform, which can distinguish between the shape
of subsonic and supersonic solitary waves. This gives a greater intuitive insight than the
more complex continuum approximations.

In the remainder of this section we summarize the basic results used in later sections. An
important result on the asymptotic form of the tail of a solitary wave is given in section 2.
Section 3 is concerned with continuum approximations, and finding good approximations
for height, width and overall shape; whilst section 4 uses the method of identities to find
a simple, but accurate waveform. Numerical calculations analysing the accuracy of our
approximations are included in section 5. A concluding discussion of the results of the
paper is contained in section 6.

1.1. Derivation

The kinetic energy is exactly the same as in the usual lattice models, but the potential energy
contains an extra term to account for the second-neighbour interactions (W ). From these
two quantities, we can construct (the Lagrangian and) the Hamiltonian

H =
∑
n

1
2p

2
n + V (qn+1 − qn)+W(qn+2 − qn). (1.1)

HereV (·) is the energy associated with nearest-neighbour interactions, andW(·) is the
energy associated with second-neighbour interactions. Hamilton’s equations then lead to
the ‘not-so-intuitive’ equation of motion forφn ≡ qn+1 − qn

φ̈n = V ′(φn+1)− 2V ′(φn)+ V ′(φn−1)+W ′(φn+2 + φn+1)−W ′(φn+1 + φn)

−W ′(φn + φn−1)+W ′(φn−1 + φn−2).
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It has already been mentioned that second-neighbour interactions (SNI) are weaker than
nearest-neighbour interactions (NNI); to this end we shall only consider the harmonic part
of SNI; i.e.W(θ) = 1

2gθ
2. Whereupon the equation of motion simplifies to

φ̈n = V ′(φn+1)− 2V ′(φn)+ V ′(φn−1)+ g(φn+2 − 2φn + φn−2). (1.2)

We assume a polynomial model forV , V ′(φ) = φ + aφ2 + bφ3, following [10, 17].
If we make the travelling wave ansatz,φn(t) = φ(n−ct) = φ(z), we obtain an equation

with a single independent variable

c2φ′′(z) = V ′(φ(z + 1))− 2V ′(φ(z))+ V ′(φ(z − 1))+ g[φ(z + 2)− 2φ(z)+ φ(z − 2)]

(1.3)

and it is this differential–delay–advance equation that we shall put our efforts to.

1.2. Dispersion relation

We linearize the equation of motion around the zero solution (φ = 0), and substitute a linear
wave solution (φ = exp i(kn− ωt))

ω2(k) = 4 sin2( 1
2k)+ 4g sin2(k) c2(k) = 4

sin2( 1
2k)

k2
+ 4g

sin2(k)

k2
.

The speed of sound in the lattice is then,c0 = √
1 + 4g, and we have the condition that

g > − 1
4 for the propagation of small disturbances. Ifg < − 1

4, c0 will be imaginary and
we have solutions of the formφ = exp(γ t + ikn) with γ ∈ R. This indicates that the zero
solution is unstable if the second-neighbour interactions are competitive and strong enough.

1.3. Standard continuum approximation

Using the standard arguments of forming a continuum approximation, one assumesφ to be
a small and slowly varying function of the continuous variables(x, t). We keep second
derivatives of all terms, and fourth derivatives only of linear terms, to end up with a soluble
equation

φtt = (V ′(φ))xx + 4gφxx + 1
12φxxxx + 4

3gφxxxx + O(φxxxxxx, (φp)xxxx). (1.4)

The travelling wave solutionφ(z) = φ(x − ct) then satisfiesc2φ = V ′(φ)+ 4gφ + 1
12(1 +

16g)φ′′ which can be integrated once further to

1
24(1 + 16g)φ′2 = 1

2(c
2 − 4g − 1)φ2 − a

p + 1
φp+1 (1.5)

so, we can see that solutions will exist withc2 < 1+ 4g provided thatg < − 1
16. The speed

of sound in the lattice is seen, from the dispersion relation, to be
√

1 + 4g, so that these
solutions correspond to subsonic solitons, and are an effect of second-neighbour interactions.
If g > − 1

16, then supersonic solitons exist (as in the purely NNI lattices). We cannot have
both supersonic and subsonic solitons existing in a single system.

The continuum solution for sub- and supersonic solitary waves in the cubic lattice is

φcub(z) = 3

2a
(c2 − 4g − 1) sech2

(
z

√
3(c2 − 4g − 1)

1 + 16g

)
(1.6)

and for the quartic lattice

φqu(z) =
√

2

b
(c2 − 4g − 1) sech

(
2z

√
3(c2 − 4g − 1)

1 + 16g

)
. (1.7)
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The half-height widths of these waves are

widthcub = 2

√
1 + 16g

3(c2 − 4g − 1)
log(1 +

√
2)

widthqu =
√

1 + 16g

3(c2 − 4g − 1)
log(2 +

√
3).

(1.8)

The energy carried by the soliton can also be approximated, byφ(z) = q(z + 1)− q(z) '
q ′(z) and d

dt (q) = −c d
dz (q) ' −cφ(z) thus,

H =
∫ ∞

−∞
1
2c

2φ(z)2 + V (φ(z))+ 1
2g[φ(z + 1)+ φ(z)]2 dz. (1.9)

For the cubic and quartic lattices, this expression can be calculated exactly. The results are

Hcub = 1

10a2
(c2 − 4g − 1)

√
3(1 + 16g)(c2 − 4g − 1)

×
[

9c2 + 1 − 6g + 30g

(
β coshβ − sinhβ

sinh3 β

)]
Hqu = 1

3b
√

3

√
(c2 − 4g − 1)(1 + 16g)[5c2 + 1 − 2g + 12gβ csch(2β)]

β =
√

3(c2 − 4g − 1)

(1 + 16g)
.

(1.10)

These expressions give reasonable results forc2 close to 1+4g, whereHcub ∼ (c2−4g−1)3/2

and Hqu ∼ (c2 − 4g − 1)1/2. These are two quite different types of behaviour. The
expressions given here are valid for both subsonic and supersonic waves, whichever is
appropriate according to the value ofg. The high speed limits vary withHcub ∼ c4 and
Hqu ∼ c3 asc → ∞.

In both cases subsonic solitons exist on the sublinear side of the nonlinear potential
gradient, hence for it to exist in a quartic lattice the coefficient of nonlinearity must be
negative (b < 0). Supersonic solitons exist on the superlinear side of the potential gradient.

This is only a continuum approximation, and in the limitc → ∞, this formula predicts
that the waves will become arbitrarily narrow. The lattice structure however, will not allow
this, and in such a region of parameter space, another approximation method is needed.
Such approximations will be derived in sections 3 and 4.

2. Asymptotics

If we examine how the soliton decays, we find new behaviour not found in simpler models.
Assuming the decay ofφ is given byφ(z) ∼ exp(−λz)+ cc with λ possibly complex, we
find

c2 = 2(cosh(λ)− 1)

λ2
+ 2g(cosh(2λ)− 1)

λ2

def= R(λ). (2.1)

Now we examine the functionR(λ). Forg > 0 the function is positive and increases without
bound. Thus, there is aλ ∈ R for eachc > 1+4g. However, for− 1

16 < g < 0, R(λ) has a
maximum valueRM, and for speeds above

√
RM no monotone decay is possible. Thus these

fast waves in a lattice with competitive SNI have oscillatory decay. For− 1
4 < g < − 1

16
we have only subsonic solitons so that large speeds are not allowed. The new, interesting
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case is then fast waves with− 1
16 < g < 0, and we aim to find the onset point of oscillatory

decay.
Defining λ̄ by R′(λ̄) = 0, we can find the curve in ac–g plane where oscillatory decay

starts. It is given parametrically bȳλ

g = −(λ̄− 2 tanh( 1
2λ̄))

4(λ̄ coshλ̄− sinhλ̄)
c =

√
R(λ̄). (2.2)

From these formulae, we can find two limits, asλ̄ → 0, g → − 1
16 andc → √

1 + 4g, this
is the continuum approximation, with low flat solitary waves travelling close to the speed
of sound in the lattice. The other limit,̄λ → ∞ hasc → ∞ andg → 0. For λ ∈ C, we
put λ = µ + iν , µ, ν ∈ R. By writing down the real and imaginary components of (2.1)
we can see that when the decay is oscillatory, we still haveµ > 0 and so the amplitude
continues to decay.

Figure 1. The figure shows the types of behaviour that are found in thec–g parameter space;
with an enlargement of the boxed region.

To gain more idea of the behaviour of this oscillation we can investigate a limit using
further asymptotics. The bifurcation fromν = 0 is continuous so that near the bifurcation,
ν will be small and the oscillations have large wavelengths. However, away from the
bifurcation point it is not so clear what will happen. It can be shown that asµ → ∞, ν
tends toπ/2 andc → ∞. Thus, the spatial decay of the wave continues to strengthen as
the speed increases. To be more specific

ν ∼ 1
2π(1 − µ−1) asµ → ∞ (2.3)

and c ∼ µ−1eµ
√−g. This corresponds to the oscillation having a wavelength of four

particles (the amplitude decay, however, means that no part of the soliton is actually
periodic). This conclusion is reached by a process of elimination,ν can never equalnπ/2,
whatever valuesc, µ take. Thus,π/2 is the only consistent limit forν.

This has important implications for the interpretation of numerical simulations. The
presence of ripples in a soliton tail need not imply the non-existence of a solitary wave.
Simulations which start with an approximation to a solitary wave and wait for the time
evolution to separate out an exact solitary wave from the radiation (using the ideas of the
IST from integrable systems) cannot be used to claim non-existence simply due to the
development of ripples.
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Figure 2. The figure shows how the imaginary part of the exponent varies with speed in the
rangeg ∈ (− 1

16, 0).

3. Continuum approximations

We shall formulate the approximations in Fourier space, where the operator is a function
of the transform variablek. From the equation for the travelling wave (1.3), we put
F(z) = V ′(φ(z)) and denote Fourier transforms byφ̂(k), F̂ (k).

Taking the Fourier transform of equation (1.3)

c2k2φ̂(k) = 4F̂ (k) sin2( 1
2k)+ 4gφ̂(k) sin2(k). (3.1)

Continuum approximations are formed by expanding around a solution dominated by long
wave modes, i.e.̂φ(k) is dominated by its smallk component. Hence it is important for the
operator to be accurately approximated neark = 0. We first isolate the operator, that is all
terms explicitly involvingk, into a single multiplier, which we shall denotê3(k).

3̂(k)φ̂(k) =
(
c2k2 − 4g sin2(k)

4 sin2( 1
2k)

)
φ̂(k) = F̂ (k). (3.2)

Pad́e approximates of the operator̂3(k) are now formed by expanding aroundk = 0
to obtain various equations. On inverting the transform, quadratic terms ink become
second-derivative operators, and we are left with an autonomous second-order ODE which
approximates the differential–delay equation. In all cases a solution is achievable, but some
require much algebra. This is in contrast to the differential–delay equation, to which there
are no known solutions. An approximate speed–height relationship is easily derivable, and
will be quoted.

3.1. (2, 0) Padé approximation

The method of approximation used in this section follows the ideas of Rosenau [19] and
leads to generalizations of the equations originally found by Collins [5] and Collins and Rice
[6]. Here we approximatê3(k) by the (2,0) Pad́e approximate(c2 − 4g)+ 1

12(c
2 + 12g)k2,

and upon inverting the Fourier transform, the ODE we have to solve is (from 3.2)

(c2 − 4g)φ − 1
12(c

2 + 12g)φ′′ = V ′(φ) (3.3)
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which in the cases of cubic or quartic potentials, can be completely solved

φcub(z) = 3

2a
(c2 − 4g − 1) sech2

z√3(c2 − 4g − 1)

(c2 + 12g)


φqu(z) =

√
2

b
(c2 − 4g − 1) sech

2z

√
3(c2 − 4g − 1)

(c2 + 12g)

 .
Note we obtain the same speed–height scaling as in the standard continuum approximation,
but we find a new, non-singular width scale—that is as we increase the speed (c), the width
tends to a finite constant. The half-height widths are given by,

widthcub = 2

√
(c2 + 12g)

3(c2 − 4g − 1)
log(1 +

√
2) widthqu =

√
(c2 + 12g)

3(c2 − 4g − 1)
log(2 +

√
3).

Using a more accurate expression for the waveform, we can also find a better estimate of
the energy carried by the wave. The expansion

φ(z) = q(z + 1
2)− q(z − 1

2) ' q ′(z)+ 1
24q

′′′(z) (3.4)

can be inverted to findq ′(z) ' φ − 1
24φ

′′. Thus an improved expression for the kinetic
energy is found, leading to a formula for the total energy which is more accurate than (1.9).

H =
∫ ∞

−∞
1
2c

2φ(z)2 + 1
24c

2φ′(z)2 + V (φ(z))+ 1
2g[φ(z + 1)+ φ(z)]2 dz. (3.5)

Explicitly

Hcub = (c2 − 4g − 1)3/2

10a2

√
3(c2 + 12g)

×
[

9c2 + 1 − 6g + 1

3
c2β2 + 30g

(
β coshβ − sinhβ

sinh3 β

)]
Hqu = 1

3b
√

3

√
(c2 − 4g − 1)(c2 + 12g)[5c2 − 2g + 4 + 1

3β
2 + 4gβ csch(2β)]

β =
√

3(c2 − 4g − 1)

(c2 + 12g)
.

(3.6)

The behaviour of the energy near the speed of sound is unchanged, both lattices have zero
energy at this point (since the soliton formally has zero amplitude here). The large speed
asymptotics is modified,Hcub ∼ c6 andHqu ∼ c4 asc → ∞.

3.2. (0, 2) Padé approximation

This case is one of the more complex approximations, since we have the differential operator
acting upon the nonlinear term

(c2 − 4g)φ(z) =
[

1 + (c2 + 12g)

12(c2 − 4g)

(
d

dz

)2
]
V ′(φ(z)). (3.7)

If we were to ignore the derivatives of nonlinear terms, the standard continuum
approximation would be recovered. Since we keep this term, we expect to get a more
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accurate approximation. Keeping this extra term, the equation can still be integrated; first
to

12(c2 − 4g)2[φV ′(φ)− V (φ)] = 6(c2 − 4g)V ′(φ)2 + 1
2(c

2 + 12g)φ′2V ′′(φ)2. (3.8)

The constant of integration is zero since we have quiescent boundary conditions asz → ±∞.
For a speed-height relation we putφ′(z) = 0. To obtain the height (φ0) as a function of
speed (c) requires the solution of a quadratic; we keep both possible roots for the time being,
and use the upper sign to denote the root which matches with the continuum approximation
result in the limit of small height.

aφ0,cub = 2
3(c

2 − 4g)− 1 ± 1
3

√
(c2 − 4g)(4c2 − 16g − 3)

bφ2
0,qu = 3

4(c
2 − 4g)− 1 ± 1

4

√
(c2 − 4g)(9c2 − 36g − 8).

(3.9)

We now consider the equations (3.9) as bifurcation curves in(c, φ0) space. For certain
parameter values, these curves consist of a single connected line which bends back on
itself. Thus, the approximations (3.9) open up the possibility of a saddle-node bifurcation
occurring in parameter space (see figure 4). The methods that generate this result rely on an
approximation aroundc = √

(1+4g), φ(z) ≈ 0) and so cannot be expected to give rigorous
results near a bifurcation point. It would be interesting to see the results of a numerical
path-following investigation of this problem. All the approximation methods above predict
a branch which extends all the way back toc = 0, however, the numerics of Flytzaniset
al [12] suggest that as the speed is reduced, the branch of subsonic solitons either becomes
unstable (with the possibility of an associated bifurcation) or ceases to exist.

To find the shape of the waveform that this approximation generates, we take the
differential equation (3.8), separate and integrate to find

z(φ) = ±
√

c2 + 12g

12(c2 − 4g)

4 tan−1

√
φ0 − φ

φ − φ̄0
− 2

aφ̄0

√
−φ̄0

φ0
tanh−1

√
φ̄0

φ0

√
φ0 − φ

φ − φ̄0


(3.10)

in the case of supersonic waves in the cubic lattice (g > − 1
16, c2 > 1 + 4g); and

z(φ) = ±
√

c2 + 12g

12(c2 − 4g)

4 tan−1

√
φ0 − φ

φ − φ̄0
− 2

aφ̄0

√
−φ̄0

φ0
tan−1

√
φ̄0

φ0

√
φ0 − φ

φ − φ̄0


(3.11)

in the case of subsonic waves in the cubic lattice (− 1
4 < g < − 1

16, c2 < 1+4g). In each case,
the implicit expression can be converted to a equation which is easily solved numerically.
A simple way of accomplishing this is by substituting2 =

√
(φ0 − φ)/(φ − φ̄0), solving

the equation for2, then findingφ from 2. The momentum can then be obtained from a
rearrangement of the differential equation (3.8). A similar procedure can be carried out for
the quartic lattice.

3.3. (2, 2) Padé approximation

This approximation gains an extra order of accuracy over the methods described so far. By
allowing a differential operator to act on both sides of the equation, an extra term in the
Taylor series of3̂(k) can be accommodated. All the above approximations have dealt with
terms which arise from fourth spatial derivatives in a PDE approximation of the lattice. This
approximation also effectively accommodates the sixth spatial derivatives, but by using a
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Pad́e approximation, no higher derivatives actually appear in our equations. Instead we pay
for the extra accuracy in more cumbersome algebra—the terms we do have to deal with
become more complicated. We write the operator as

3̂(k) ∼ α − βk2

1 − γ k2
α = (c2 − 4g)

β = −(c4 + 96c2g + 240g2)

30(c2 + 12g)
γ = (c2 − 20g)

20(c2 + 12g)
.

(3.12)

Whereupon the differential equation [α + β( d
dz )

2]φ = [1 + γ ( d
dz )

2]V ′(φ) integrates to

2(β − αγ )V (φ)+ 2αγφV ′(φ)− γV ′(φ)2 − αβφ2 = φ′(z)2[γV ′′(φ)− β]2. (3.13)

The speed–height relation is easily obtained from this first integral

aφ
p−1
0 = (c2 − 4g − 1)− 5(c2 + 12g)2

3(p + 1)(c2 − 20g)

×
1 ∓

√
1 + 3(p2 − 1)(c2 − 20g)(c2 − 4g − 1)

5(c2 + 12g)2

 . (3.14)

This formula has two branches of solutions, as the(0, 2) Pad́e approximation also had.
Again the upper sign gives the root which agrees with the simpler approximations near the
speed of sound. The two curves (3.14) can be considered as branches in bifurcation space
with parameterc2. Unfortunately, in this case the two curves do not meet at a point where
c2 is positive (so we do not actually see the bifurcation point). This is disappointing, but
since these methods are based on an expansion around the pointc2 = 1 + 4g, φ = 0, we
only expect quantitatively accurate results near this point, and not at points far away from
this. The waveform from this approximation can be found in a similar way to the method
outlined for the(0, 2) Pad́e approximation.

3.4. Global approximation of operator

All the above methods predict that at high speeds the solitary waves become narrow (with
their widths being of the order of the lattice spacing), and so their Fourier transforms
will be expected to contain a highk component. Yet the earlier approximations all rely
on expansions aroundk = 0. To form accurate approximations in the large speed (c)
parameter range, we need an approximation of the operator which will take account of the
high frequency component as well as the low.

Hence, we suggest an approximation of the formλ̂ = [α + βk2]. By considering the
values of each operator atk = 0 andk → ∞ we deduce thatc2 − 4g and 1

2c
2 are suitable

values forα, β respectively. The solution of the equation [α + βk2]φ̂ = F̂ is obtained by
inverting the Fourier transform and solving the ODE,αφ − βφ′′ = V ′(φ). The solutions
are then

φcub(z) = 3

2a
(c2 − 4g − 1) sech2

(
z

c

√
1
2(c

2 − 4g − 1)

)
φqu(z) =

√
2

b
(c2 − 4g − 1) sech

(z
c

√
2(c2 − 4g − 1)

)
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for the cubic and quartic potentials respectively. The widths of these waves are:

widthcub = 2c
√

2 log(1 + √
2)√

c2 − 4g − 1
−→ 2

√
2 log(1 +

√
2) ≈ 2.49

widthqu = c
√

2 log(2 + √
3)√

c2 − 4g − 1
−→

√
2 log(2 +

√
3) ≈ 1.86.

(3.15)

Note that this method is not applicable in the subsonic range (wherec2 − 4g − 1< 0).

4. Method of identities

In this section, we generalize the results of [8] to the lattice with second-neighbour
interactions, and give an explanation of the reasons why this method works. It is based on
the variational form of the equations.

The identities are obtained by multiplying the travelling wave equation (1.3 through by
a test functionψ(z), and integrating over the entire range ofz (−∞,∞). This is similar to
the method used when seeking weak solutions of an equation. After integration by parts,
the general identity∫
c2φ(z)ψ ′′(z) dz =

∫
V ′(φ(z))[ψ(z + 1)− 2ψ(z)+ ψ(z − 1)] dz

+
∫
gφ(z)[ψ(z + 2)− 2ψ(z)+ ψ(z − 2)] dz. (4.1)

is obtained [8]. We assume that the waveformφ(z) is an even function. Then ifψ(z) is
odd, all the integrals collapse to zero, and we are left with no information to determineφ;
the test functionψ(z) = 1 also gives trivial results. So the test functions we use are the
first three even polynomials,ψ(z) = 1

2z
2, 1

2z
4, 1

2z
6, which generate the three identities

c2
∫
φ(z) dz =

∫
V ′(φ(z)) dz + 4g

∫
φ(z) dz

6c2
∫
z2φ(z) dz =

∫
(6z2 + 1)V ′(φ(z)) dz + 4g

∫
(6z2 + 4)φ(z) dz

15c2
∫
z4φ(z) dz =

∫
(15z4 + 15z2 + 1)V ′(φ(z)) dz

+ 4g
∫
(15z4 + 60z2 + 16)φ(z) dz.

(4.2)

Following the comments made earlier, we try an ansatz function that is even, decays
exponentially at infinity, and has free parameters that can be fitted using the identities. We
consider the three parameter fit,φ(z) = A sechn(βz). The half-height-width of such a wave
is given by

width = 2

β
log

(
21/n +

√
22/n − 1

)
(4.3)

which remains finite in bothn → 0,∞ limits.
The first identity fits the height (A) with some dependence onn; the second, a width

scale (β)

Ap−1 = I0,n

I0,np

(
c2 − 4g − 1

a

)
β2 = 6

(
c2 − 4g − 1

c2 + 12g

) (
I2,n

I0,n
− I2,np

I0,np

)
. (4.4)
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Here the quantityIm,n is defined by

Im,n =
∫ ∞

−∞
xm sechn(x) dx. (4.5)

The third identity is used to fixn—a ‘shape’ parameter. To obtain anything useful
from this, involves long and tedious algebra. The final result is a quadratic inc2 where the
coefficients are complicated functions ofn. This can be solved to give speed as a function
of n and then also plot height, and width as parametric functions ofn. (See the appendix
for further details of this calculation.) The results suggest that for subsonic waves,n takes
values less than 2, (the continuum limit value), but stops short ofn falling to zero.

As n increases from its continuum value, (n = 2 for the cubic lattice andn = 1 for the
quartic lattice), the method of identities provides a fit for supersonic waves which exceeds
the accuracy of the standard continuum approximation. The limitn → ∞ gives a positive
bounded value forc∞ providedg & −0.01 and bounded, to be precise

c2
∞ = 3 + 132g +

√
9 + 912g + 17 664g2. (4.6)

This limit corresponds to using a Gaussian pulse (formed from limn→∞ sechn(x/
√
n)). In

the case of a NNI lattice this type of pulse was seen to be a good fit for a wide range of
speeds [8]. Here, we find similar results. The form is given more completely by

φ(z) =
(√

p(c2 − 4g − 1)

a

)1/(p−1)

exp

(
−3z2

(
p − 1

p

) (
c2 − 4g − 1

c2 + 12g

))
(4.7)

where only the first two identities can be satisfied, since there are only two parameters
(height and width—there is now no shape parameter to take the place ofn). For any speed
abovec∞, this approximation is more accurate than any correspondingA sechn(βz) formula
for finite n with coefficients given by (4.4).

4.1. Derivation of identities from Lagrangian

As already stated, the system we are considering is a Hamiltonian and Lagrangian system.
Whilst the Hamiltonian is widely known to be the energy, an interpretation of the Lagrangian
is not so accessible [31]. The identities described earlier were derived in a very simple way,
directly from the equation for the travelling wave (1.3). Here, we shall demonstrate that
these identities are in fact a consequence of the Lagrangian structure. Our Lagrangian is

L =
∑
n

1
2 q̇

2
n − V (qn+1 − qn)−W(qn+2 − qn). (4.8)

The equations of motion are derived by setting the first variation of the time integral to zero
(δ

∫
L dt = 0). Thus, scalingL by a constant does not alter the equations of motion. We

now impose the travelling wave ansatz into the Lagrangian, integrate fromt = 0 to t = 1/c
and rescale to obtain

S[q] =
∫
z∈R

1
2c

2q ′(z)2 − V (q(z + 1)− q(z))−W(q(z + 2)− q(z)) dz (4.9)

whereq is a function ofz
def= n− ct .

We now examine critical points of this functional. Letq̃(z) be a critical point of the
integral,r(z) an arbitrary perturbation with unit norm, andε � 1 a small parameter. The
first variation is defined as a Gateaux derivative

δS[q]r = lim
ε→0

S[q + εr] − S[q]

ε
. (4.10)
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A turning point forS is sought, i.e. a functioñq(z) such thatδS[q̃]r = 0 for anyr(z). One
such condition is∫
r(z)[c2q̃ ′′(z)− V ′(q̃(z + 1)− q̃(z))+ V ′(q̃(z)− q̃(z − 1))

−W ′(q̃(z + 2)− q̃(z))+W ′(q̃(z)− q̃(z − 2))] dz = 0. (4.11)

Since this integral must vanish for all functionsr(z), the term in square brackets must
equal zero, which gives the travelling wave equation (1.3). Alternatively, we can write this
integral in a weak form, using integration by parts to remove the derivatives fromq̃ ′′(z)
and place them onr(z) instead.∫
c2q̃(z)r ′′(z)+ [r(z + 1)− r(z)]V ′[q̃(z + 1)− q̃(z)]

+[r(z + 2)− r(z)]W ′[q̃(z + 2)− q̃(z)] dz = 0. (4.12)

We define the variableφ(z) = q̃(z + 1)− q̃(z), and eliminateq̃ which describes a kink, in
favour ofφ(z) which has the form of a pulse. A second equation is obtained by changing
variables,z 7→ z+1 (in 4.12) and subtracting the two equations to express the result purely
in terms ofφ(z). The final result is then

c2
∫
r ′′(z)φ(z) dz =

∫
[r(z + 1)− 2r(z)+ r(z − 1)]V ′[φ(z)] dz

+
∫

[r(z + 2)− r(z + 1)− r(z)+ r(z − 1)]W ′[φ(z)+ φ(z + 1)] dz (4.13)

which in the case of harmonicW(·) reduces to equation (4.1).

Figure 3. The figure shows height versus width curves for supersonic solitary waves in the
cubic lattice with SNI, withg = 0.5, a = 2 (b = 0). The upper continuous line represents
standard continuum approximation, the upper broken curve shows the(2, 2) Pad́e approximate,
the lower continuous line shows the Gaussian wave form from the method of identities, and the
lower broken curve is the(0, 2) Pad́e continuum approximate.
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Figure 4. The figure shows height versus width curves for subsonic solitary waves in the cubic
lattice with SNI, with g = −0.162, a = −2 (b = 0). The lower broken curve represents
the Gaussian fit; the upper broken curve shows the(2, 2) Pad́e approximation, and the full
curve sandwiched between these two shows the standard continuum approximation. The other
full curve which bends back on itself is from the(0, 2) Pad́e approximation; this shows the
possibility of subsonic waves ceasing to exist as the speed (c) is lowered via a saddle-node
bifurcation.

5. Numerical results

First in this section we display graphs of amplitude vs speed as generated by each of the
approximations in sections 3 and 4, for both supersonic and subsonic waves. These are
displayed in figures 3 and 4 respectively. From these graphs we note that the speed–height
characteristics for the standard continuum and(2, 0) Pad́e continuum approximation are the
same. This has already been noted indirectly earlier—the only difference between the two
solutions is in the width of the wave. The differences caused by this will be seen in more
detail the numerical calculations presented later in this section.

It appears that the amplitude of supersonic waves is overestimated by the standard
continuum approximation, as all our other approximations lie under its height–speed curve.
The (2, 2) Pad́e lies closest to it, the(0, 2) Pad́e gives the lowest estimate. Between these
latter two lies the Gaussian waveform fitted by the method of identities. All four lines have
a very similar shape.

For subsonic waves the standard continuum approximation lies between the(2, 2) Pad́e
approximate and the Gaussian fit to the identities. The(2, 0) Pad́e method of approximation
gives the same speed–height characteristics as the standard continuum approximation (as for
supersonic waves) thus no separate line appears on the figure. However, the main feature
from this graph comes from the(0, 2) Pad́e approximate, which exists for a shorter range
of speed values—it does not extend all the way toc = 0. The non-existence of slow waves
in this lattice was noted by Flytzaniset al [12], and here we see a possible mechanism by
which the existence of solutions is lost. A full numerical analysis of the bifurcation plane
is needed to confirm this result, and investigate the shape of the solitary wave at its slowest
speed.
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From the method identities, if we assume the shape is approximatelyφ ≈ A sechp(βz),
we find thatp decreases withc for subsonic waves. In the limitp → 0, the shape forms
a corner (φ ≈ A exp(−β̃|x|)). Although the method of identities does not imply thatp
actually reaches zero for values ofc we are interested in, we can speculate that slow waves
cease to exist due to the formation of a cusp. This type of behaviour has been seen in other
types of solitary wave equation such as the electrical lattice [9], and a nonlocal nonlinear
Schr̈odinger equation studied by Christiansen and Rasmussen [4].

The approximations to solitary waves generated in the above two sections have been used
as initial conditions in numerical integration of the lattice equations (1.2). The numerical
scheme used is that of Candy and Rozmus [2]. This is a symplectic scheme for Hamiltonian
systems of ODEs, and has been shown to be more accurate, efficient and easier to program
than common Runge–Kutta methods [7].

Table 1. Accuracy of supersonic waves generated by the methods proposed earlier for the cubic
SNI lattice withg = 1

2 , a = 2, b = 0.

Wave speed,c 1.8 2.0 2.5 3.0 3.5 4.0

Standard continuum 91.6% 99.7% 99.4% N/A N/A N/A
H = 0.49 H = 5.04 H = 44

(2, 0) Pad́e continuum 91.2% 99.6% 99.99% 99.86% N/A N/A
H = 0.50 H = 5.32 H = 52.6 H = 205

(0, 2) Pad́e continuum 87.7% 96.2% 96.1% 96.4% N/A N/A
H = 0.54 H = 6.44 H = 68.1 H = 278

Global approx to 78.2% 93.6% 92.4% 92.4% N/A N/A
Fourier operator H = 0.72 H = 8.26 H = 92.2 H = 395

Gaussian fitted 83.1% 97.0% 98.6% 99.25% 99.6% 99.8
by identities H = 0.58 H = 6.26 H = 61.9 H = 245 H = 707 H = 1696

The calculation of the accuracy percentage is based on the proportion of the total energy
in the system which is contained in the seven lattice points closest to (and including) the node
with maximum amplitude. This provides an accurate measurement for fast waves which
are highly localized, but underestimates the accuracy of waves very close to the continuum
limit—which are spread out over many more lattice sites. However, these waves are easily
approximated by any one of a variety of methods; the aim of this paper is to find methods
which work well a long way from the continuum limit.

In all cases of waves away from the continuum limit, we see that the(2, 0) Pad́e
approximation is an improvement on the standard continuum approximation. The only
difference between these two is the width scale of wave—their speed–height characteristics,
and shapes are identical (both being sech2 curves in the cubic lattice and sech in the quartic
case).

Away from the continuum limit we also see that supersonic waves are even better
approximated by the(0, 2) and(2, 2) Pad́e approximates, the global approximation and the
Gaussian fit. These are all new approximations for this lattice. The(2, 2) Pad́e method
suffers from the drawback that while a speed-height relationship can be found for all relevant
speeds, the waveform can only be calculated ifc2 > 20g. This is a limitation of the method,
hence no results at all are displayed for the cubic lattice in this case.
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Table 2. Accuracy of supersonic waves generated by the methods proposed earlier for the
quartic SNI lattice withg = 1

2 , a = 0, b = 2.

Wave speed,c 1.8 2.0 2.5 3.0 3.5 4.0 100

Standard continuum 95.8% 99.88% 95.9% 81.2% 62.4% 48 % 33 %
H = 2.71 H = 6.56 H = 16.5 H = 31.6 H = 57.9 H = 102 5× 108

(2, 0) Pad́e continuum 95.5% 99.82% 99.3% 96.6% 93.1% 89.9% 74 %
H = 2.74 H = 6.93 H = 20.0 H = 41.6 H = 77.2 H = 132 5.5 × 108

(0, 2) Pad́e continuum 91.2% 90.6% 88.8% 92.1% 98.0% 98.4% 91.8%
H = 3.26 H = 9.87 H = 35.0 H = 71.8 H = 108 H = 188 1.3 × 108

(2, 2) Pad́e continuum N/A N/A N/A N/A 95.9% 96.9% 98.0%
H = 78.7 H = 138 9.3 × 107

Global approx to 84.6% 90.3% 91.7% 92.9% 93.7% 94.2% 95.6 %
Fourier operator H = 4.0 H = 10.8 H = 36.5 H = 84.0 H = 164 H = 288 1.2 × 109

Gaussian fitted 85.% 93.6% 97.0% 98.7% 99.4% 99.7% 98.9 %
by identities H = 3.64 H = 9.2 H = 27.5 H = 59.2 H = 111 H = 187 6.3 × 108

Table 3. Accuracy of subsonic waves generated by the methods proposed earlier for the cubic
SNI lattice withg = −0.2, a = −2, b = 0.

Wave speed,c 0.4 0.35 0.3

Standard continuum 88.4 % 97.9 % 99.6 %
H = 0.000 866 H = 0.001 93 H = 0.002 65

(2, 0) Pad́e continuum 88.7% 99.4 % 96.3 %
H = 0.000 874 H = 0.001 95 H = 0.002 70

(0, 2) Pad́e continuum 87.9% 95.3 % 97.3 %
H = 0.000 856 H = 0.001 88 H = 0.002 56

(2, 2) Pad́e continuum 83.2% 98.6 % 91.5 %
H = 0.000 992 H = 0.002 44 H = 0.003 58

Gaussian fitted 83.7% 92.0 % 96.0 %
by identities H = 0.001 03 H = 0.002 28 H = 0.003 12

The method based on a global approximation to the operator in Fourier space works
well for the c → ∞ case, where simple accurate explicit expressions are generated, but it
is never as good as the(2, 2) Pad́e approximation or the Gaussian. All other methods give
good results for the expected ranges of speed.

Fast waves in the cubic lattice are hard to generate since there is always the possibility
that energy which does not form part of the soliton will cause a node to mount the potential
barrier, (atφ = −1/a) and drag its neighbours towards−∞ with it. This is the reason
that several of the entries in the table of results for the cubic lattice only contain ‘N/A’.
However, this demonstrates the extra accuracy gained by used the Gaussian fit or global
approximation to operator.
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The Gaussian waveform has very rapid decay to zero, (faster than exponential),
thus gives a narrower waveform than many of the continuum approximations, and gives
exceptionally accurate approximation for fast waves. This is consistent with the the results
of section 2, where we saw that very fast waves (c → ∞) also have rapid decay (φ ∼ e−λz

with λ → ∞).
For subsonic waves, the new methods achieve the same degree of accuracy as the

standard continuum approximation. However, for fast supersonic waves, the new methods
show a great improvement over the standard continuum approximation as well as the
improved continuum approximation of Collins and Rice [5, 6], and are valid not just near
the continuum limit, but for virtually all wave speeds.

6. Discussion

The aim of this paper has been to analyse a lattice with second-neighbour interactions
(SNI). Various analytic tools have been used to extract information about the shape, height,
energy and width of solitary waves supported on such a lattice. We have shown that it is
possible to extend the higher order continuum methods developed in [22], to more general
lattice equations; even though these methods make some use of the special structure of the
equations.

In section 2 it was shown that an exact travelling wave can have a tail, which while
decaying to zero, oscillates around its limiting value. The possibility of having such
oscillations means that great care needs to be taken when interpreting data from numerical
simulations. The development of oscillations in a tail does not necessarily imply the non-
existence of an exact solitary wave.

An exact travelling wave having spatial oscillations in its tail has been studied in
continuous systems previously, see Champneys and Toland [3] for example; but as far
as I am aware, this is the first mention of the phenomenon in spatially discrete systems.

Several different methods of forming Continuum approximations to the solitary waves
are presented in section 3. These vary in complexity, from a modification of the standard
continuum approximation to the algebraically complex, but highly accurate(2, 2) Pad́e
approximate. New ideas about loss of existence of subsonic solitary waves come principally
from the(0, 2) Pad́e approximation, where the operator is applied to the nonlinear function
of the waveform. This inevitably leads to more complex equations than cases where the
operator acts directly on just the waveform; but in the cases studied here, we still obtain
soluble equations. In the case of subsonic solitary waves, the(2, 0) Pad́e approximation
to the speed–height curves undergoes a saddle-node bifurcation, which would explain the
existence of subsonic waves close to the speed of sound, but the apparent non-existence of
waves with speeds close to zero. This explanation gives an approximation to a minimum
speed of wave.

Such a scenario is supported to some extent by the(2, 2) Pad́e approximant, which
we would expect to be more accurate. This also predicts two branches of solutions near
c2 = 1 + 4g, φ0 = 0 in bifurcation space. However, the local analysis that these methods
are based on do not predict the branches will meet with positivec2 (that is this method of
approximation predicts a bifurcation point outside our region of interest). Whilst the(2, 2)
Pad́e approximation is more accurate than other approximations whenc2 is near 1+ 4g,
we cannot expect quantitatively accurate answers forc2 far away from this value. The
existence (or otherwise) and position of the saddle-node bifurcation needs to be analysed
using a highly accurate numerical path-following code. Numerical simulations show that
the (2, 2) Pad́e approximant is highly accurate for supersonic waves with speed much larger
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than the speed of sound.
The method of identities is a novel approach to forming approximations to solitary

waves. Whilst it requires some insight in finding a suitable ansatz function to use, it
provides highly accurate approximations to solitary waves. The Gaussian approximation for
fast supersonic waves is both accurate and easy to use, and leads to a good understanding
in the differences in shape between waves near the continuum limit and those further away.

Remoissenet and Michaux [18] used a lattice equation to model electrical transmission
lines. Their lattice equation supports supersonic solitons which have the same property
as subsonic solitons described in this paper. That is, the shape parametern (as defined
in section 4)decreasesas we move away from the continuum limit approximation. This
represents a ‘pinching’ of the crest of the wave, which if taken ton = 0 would form a
corner singularity. Such changes of shape are only identified by the method of identities,
and are not detected so easily by continuum methods. A similar result has been found by
Christiansen and Rasmussen [4] in a nonlocal nonlinear Schrödinger equation.

Our approximations have all been tested in a numerical integrator of the full system of
ODEs, by inserting our estimates as initial conditions for the system. The amount of energy
forming a solitary wave at some later time is calculated and used to calculate the accuracy of
each approximation. Energy which does not form part of a solitary wave is radiated as small
amplitude waves, and becomes dispersed throughout the lattice. The new approximations
are seen to be significant improvements on the types of approximation commonly used in
studies of solitary waves in lattices.

The methods outlined in section 3 are not easily generalized to arbitrary SNI (i.e. a
generalW ), due to the difficulty in isolating all the explicitlyk-dependent terms into a
single multiplier. Diatomic lattices present more complications, since the variations in mass
have to be taken into account. It is hoped to be able to extend this work to cover that case
in the near future. The diatomic lattice considered by Kofaneet al [13] has been analysed
using continuum methods of higher accuracy similar to those used here [30].
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Appendix A.

Using the definitionsJm,n
def= Im,n

I0,n
, Km,n,p

def= Jm,n − Jm,np, the quadratic referred to in
section 4 and derived from the third identity (4.2) after substituting forA andβ from (4.4)
is

[K4,n,p − 6K2,n,pJ2,np − 12
5 K

2
2,n,p]c4 + 6[4gK4,n,p + (1 − 8g)K2,n,pJ2,np

−(1 + 16g)K2,n,pJ2,n + 2
5(1 − 56g)K2

2,n,p]c2

+72g[2gK4,n,p + (1 + 4g)K2,n,pJ2,np

−(1 + 16g)K2,n,pJ2,n + 2(1 + 4g)K2
2,n,p] = 0. (A1)



8156 J A D Wattis

Instead of regardingc as a function ofn and trying to solve the above equation forn, we
shall regardn as the independent variable, and investigate the effect of varyingn on the
other quantities. The larger root is taken, since this agrees with the continuum results in
the limit c2 → 1 + 4g.

The width (4.3) remains finite in bothn → 0,∞ limits

width
n→0−→ 2p log(2)

√
(p2 − 1)(c2 + 12g)

3(c2 − 4g − 1)

(
1 + n

2

)
width

n→∞−→
[

4p log(2)

3(p − 1)

(
c2 − 4g − 1

c2 + 12g

)]1/2 (
1 + (p + 1)

2np
+O(n−3/2)

)
and in the limitn → 0

Ap−1 ∼ p

(
c2 − 4g − 1

a

)
β2 ∼ 12

n2p2

(
c2 − 4g − 1

c2 + 12g

)
(p2 − 1). (A2)

However, it can be shown that for this particular modeln will not actually reach zero for
positivec2.
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